Geo-Metric-Affine-Projective Projective Drawing Board (PDB)

Computin PDB is an interactive program for doing plane projective
geometry that will be used to illustrate this lecture.

Speaker: Ambjoérn Naeve, Ph.D., Senior researcher
PDB has been developed by

Affiliation: Centre for user-oriented I T-Design (CID) Harald Winroth and Ambjérn Naeve

Dept. of Numerical Analysis and Computing Science as apart of Harald' s doctoral thesis work at

Royal Institute of Technology (KTH) the Computational Vision and Active Perception
100 44 Stockholm, Sweden (CVAP) laboratory at KTH .

email-address: amb@nada.kth.se PDB is avaliable as freeware under Linux.

web-site cid.nada.kth.selil www.nada kth.se/~amb/pdb-dist/linux/pdb2.5.tar.gz
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Geometric algebra in n-dim Euclidean space Blades correspond to geometric objects
Underlying vector space V" with ON-basis €,,...,€,. blade L e
Geometric algebras G =G, © G(V")has 2" dimensions. of grade of directed and

A multivector is asum of k-vectors: M = k«’EQ( M), 1 | linesegments | length
A k-vector isasum of k-blades: (M), = A + B +... 2 surface regions area

A k-blade = blade of gradek: B, =b Ub, U...Ub, 3 3-dim-regions volume

Note B * OU b,...,b, arelinearly independent. . L .

k-dim-regions k-volume

Hence:  the grade of ablade isthe dimension of the
subspace that it spans.




Pseudoscalar s and duality
Def: A n-bladein G, iscalled apseudoscalar.

A pseudoscalar: P=pUp,U...Up,
A unit pseudoscalar: I =g Ue U...Ug
The bracket of P: [Pl=PI

The dual of amultivector X:  Dual(X) = XI*

Notation: Dual(X) = X'
Note: If Aisak-blade, then A is a (n-k)-blade.
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The subspace of a blade

Eact: Toevery non-zero mblade B=b U...UDb,
there corresponds a m-dim subspace B1 V"
with B =Linspan{b,...,b }

= Linspan{bT V" :bUB= 0}

Fact: If €,€,,...,€, isanON-basisfor B
andif b =4ibe fori=1..m,
then B=(ceth, ) Ue, U...Ue,

= (deth, Jee, ...€, .

Dual subspaces <=> orthogonal complements

Fact: If Aisanon-zero mblade A = A",

Proof: We can WLOG choose an ON-basis for V"
such that

A=lee,...e. and | =€g,...€.
We then have

A=A"=%le..€
which implies that

A=A
~SIGGRAPH -

Thejoin and the meet of two blades

Def:  Given blades A and B, if there exists ablade C
suchthaa A=BC=BUC wesay tha
Alisadividend of B and Bisadivisor of A.

Def: Thejoin of blades A and B
isacommon dividend of lowest grade.

Def: The meet of blades A and B
isacommon divisor of greatest grade.

The join and meet provide a representation in geometric
algebra of the lattice algebra of subspaces of V"

Join of two blades <=> sum of their subspaces

Def:  For two blades Aand Bwith AUB?! O
we can define; Jin(A,B)= AUB.

Inthiscase AUB=A+B

M eet of blades <=> inter section of subspaces
Def:  Ifbladess AB1 O and A+B=V"

then: Meet(A,B)° AUB=(A UB)I.
Inthiscasee AUB=ACB.

Note:  The meet product is related
to the outer product
by duality:

(AUB)I*=(A'UB)II'=A UB
Dua (AU B) = Dua (A) UDud(B)




Dual outer product

Dualisation:
G® G
XX =x"

Dual outer product:
cla' cf®(f xuy = ((x17) Uyl ™))
G G®G xUy=(xUyy

Example. V* , |=¢Ue Ug =€egeg,

A=¢e Ue, =ee, , B=¢,Ug =¢¢,

AN =(eUe)l = (ee)eee) =(- D'egece=¢
B =(e Ue)l "= (ee)eee) =¢

AUB=(A UB)I =(e,Ue)eee)=-¢

A :(?3 B
Hence: =-AUB
AUB=ACB T/f>
- SIGGRAPH- “e=B

Projective geometry - historical perspective

R

o
~IH
eye

paralldll i

lines
point ground plane
1-dim subspace through the eye
~SIGGRAPH -

n-dimensional pr oj ective space P"

P"= P( "”) = the set of non-zero subspaces of V™",
A point P isa1-dim subspace (spanned by a 1-blade &).
p=a={la:l 1 } ya¥aa,alO0.
A line | isa2-dim subspace (spanned by a 2-blade B,).
=B, ={IB:l * O ¥B,.
Let B denote the set of non-zero blades of the geometric
algebra G(V™) . Hence we have the mapping
B> B B EP".

The projective plane P

02 a,b,xT V?

x1 0:xUa=0

Theintersection of two linesin P

A, Bl {non-zero 2-bladesin G}




Callinear points

puq

The points P, q, I' are collinear
ifandonlyif pUqUr =0.

Concurrent lines

Thelines P, Q, Rare concurrent

if andonly if (PUQ)UR=0,

-SIGGRAPH -
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Desargues configuration

A=bUc
Ac¢= beU c¢
B=cUa
B¢=ctU a¢
C=alUb
Ct=atUb

P=atUa R=c¢Uc

p=AUA(

g=BUB

r=CUC«

Desargues’ configuration (cont.)

P=atUa p=AUA(=(bUc)U(b¢tUcq
Q=btUb |g=BUB(=(cUa)U(ctUad
R=cdUc r=CUC(=(aUb)U(atUbq
J=aUbUc=[abc]l
J¢=atUbcUct=[ab&q!

Leaist:  pUQUr® JYPUQ)UR.

=0ifandonlyif  =0if and only if
p,q.r arecollinear  P,Q,Rare concurrent

Desargues’ theorem

p, g, I are collinear iff P, Q, Rare concurrent.

Pascal’ s theorem
Let a,b,c,a¢bC befivegiven pointsin P?
Consider the second degree polynomial given by
p(x) =((aUbg U(atUb)) U
((6Ux) U(beUc)) U
(cUagU(xUa)).
Itisobviousthat p(a) = p(b) =0
and easy to verify that P(C) = p(a) = p(b§ =0
Hence: P(X) =0 must be the equation
of the conic on the 5 given points.




Verifying that p(@) =0

p(ag =

T

= (aUb® U(a¢U b)) U((b Uag U(beUc)) U
¥atUb

same poipt
((cUag U(acUa)) ¥(atUb)Uat =0
Y

¥a(

Pascal’ s theorem (cont.)

Hence, asixth point C{ lies on this conic if and only if

p(ch = ((aUbg U(atUb)) U
((bUcqU(beuc)) U
((cUagU(ctUa)) =0.

Geometric formul ation:

The three points of intersection of opposite sides
of a hexagon inscribed in a conic are collinear.

Thisisaproperty of the hexagrammum mysticum,
which Blaise Pascal discovered in 1640, at the age of 16.

—Z00t

Pascal’s theorem (cont.)
r=(aUb§U(atUb) =1/ 4
s=(bUc@U(beUc) =2/ 5
t=(cUa®U(ctUa) =3/ 6

rusut=0

Pascal’ s theorem (cont.)

= b — pascall 142 fview 11 Il[=]

B
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The three points of intersection of opposite sides

Pappus theorem (ca 350 A.D.)

pdb — pappus.i [view 11 =l pdb — pappus.1 [view 21 =i
S B T s i e ] [ B b s i G Viniows |

If the conic degenerates into two straight lines,
Pappus' theorem emerges as a special case of Pascal’s.

of ahexagon inscribed in a conic are collinear.

Outermor phisms
Def: A mapping f:G® G
is called an outermor phism
if
(i) fislinear.
@y f@)=t "tiR
@i f(xUy)=f(x)Uf(y) "x,yi G
vy f(G)1 G“ "k30




Theinduced outer mor phism

Le¢ T:V® V denotealinear mapping.
Fact: T inducesan outermorphism 1:G® G
given by
T(a, U...Ua)=T(a)U...UT(a,)
T)=I ,ITR
and linear extension.

Interpretation: T maps the blades of V
in accordance with how

T maps the vectors of V.

Polarization with respect to aguadricin P’

Let T:V™® V™ denote asymmetric linear map,
whichmeansthat  T(X)3y =X3T(y) " x,yi V™

The corresponding quadric (hyper)surface Q in P"
isgivenby Q={xT V™ :x>T(x)=0, x1 0},

Def:  The polar of the k-blade A with respect to Q
is the (n+ 1-k)-blade defined by
* -1
PoIQ(A)0 T(A) ° T(AI-.

Polarization (cont.)

Note T=idb Q={xTV™:x>x=0, x! O}
Inthiscase Pol,(A)° A" 0 A
and polarization becomes identical to dualization.

Fact: For ablade A we have
(i) Pol,(Pol,(A)) ¥A
(i) 1f Alistangent to Q
then Poly(A) istangentto Q.
Especially: If Xisapointon Q,
then Poly(X) isthe hyperplane
which is tangent to Q at the point X.




Polarity with respect to a conic

The polar of thejoin of Xandy = Pol(XUYy)

is the meet of the polars of Xandy = Pol (X) UPol (Y)
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Polar reciprocity
Let X, YT V™ represent two pointsin P"
Then we have from the symmetry of T :

yUT(x) =y U(T(x)17)
= (> TOPI =TI
=xU(T(y1™)=xUT(y).

Hence YUPol (X)=0 U XxUPdl,(y)=0

i.e. thepoint y lieson the polar of the point X

if and only if X lieson the polar of Y.
~SIGGRAPH -

Thedual map
Let f:G® G belinear,
andassumethat 121 0. T T

Def: Thedudmap f:G® G (f T
F(0=f(x)

isthe linear map given by

fx) = fox)I? c g

Note:  F(x)=F(xI)1 = F(a)za
= fOd 1)1 = F(x)1 = £(x)

Pl () UPdl ()

Brianchon’stheorem

Polarizing a quadric with respect to another
Lt S:G® G ad T:G® G

be symmetric outermorphisms, and let
P={xi G:x*§x)=0, x* G,
Q={x1G:x*T(x)=0, xt G
be the corresponding two quadrics.

Fact:  Polarizing the multivectors of the quadric P
with respect to the quadric Q
gives aquadric R .
withequation X* (T oSeT(x)) =0
andwehave X1 P U Pol (X)T R.




Thereciprocal guadric
Polarizing the quadric P : X* S(x) =0
with respect to the quadric Q : x*T(x) =0
generates the quadric R/: x*(ToSoT(x))=0

Theintersection of two linesin the plane
abcd — 9 ABCD

p O p_(a/B), (C/D)

Theintersection of two lines (cont.)

In the same way we get does not

contain €;

Hence we can write P as:

p=.P =.(@Db- bC)
=((@aD- bC)>e,)'(aD- bC)- €,
= = - bc- be)- e

does not
contain €;

Cartesian-Affine-Proj ective relationships

VoD x ——x=Xx+e, EA
V™ VD y ——y=(ye,)'y- e, EV

The affine part of WGN

Projective Space: defined FEP" V"

The intersection of two lines (cont.)
P=(AUB)U(CUD)
=[AUBUC ]D- [AUBUD ]C =aD- bC
[AUBUC |=(AUBUC)I"
=((a+e)U(b+e)U(c+e)eee
o= —=((@- U(b- c)U(c+e))eee
= ((a- ©)U(b- c)Uc)eee, +
((a- OU(b- c)Ue eee

Reflection in a plane-curve mirror

, M(stds)
Th—t=(9)

in-caustic

curvature centre | Out-caustic

of the mirror




Reflection in a plane-curve mirror (cont.)

Making use of the intersection formula deduced earlier

B
and introducing N = — for the unit mirror normal

we get
((p- m)>t)t- (p- m)>n)n
q- m= p
1- Z‘ﬁfr(p- m)
(p- m)n

Thisisan expression of Tschirnhausen’s reflection law.

Reflection in a plane-curve mirror (cont.)

m

Tschirnhausens
reflection formula

1,01 _ 2
u-m-ijg-m |v- m
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